
MATHEMATICS OF COMPUTATION, VOLUME 27, NUMBER 122, APRIL, 1973 

A Winding Number Algorithm for 
Closed Polygonal Paths 

By J. V. Petty 

Abstract. A winding number algorithm for closed polygonal paths (not necessarily simple) 
is derived using classical complex analysis results and techniques. The algorithm is designed 
specifically to handle large cases efficiently. The performance of a computer program based 
on the algorithm is discussed and compared with the performance of a computer program 
which obtains the winding number directly by antidifferentiation. 

1. Introduction. The algorithm does not involve the division operation, inverse 
trigonometric functions, or integral approximation techniques, making it quite suitable 
for computer programs which must process any combination of many polygonal 
paths, polygonal paths with many sides, and/or compute many winding numbers. 
In addition, if all the complex numbers in a given application are Gaussian integers, 
then a computer program based on the algorithm can be written completely in fixed 
point mode. The algorithm has proven to be computationally efficient. Results of 
efficiency tests of a FORTRAN program based on the algorithm are given in the 
final section. 

To avoid ambiguity, we define briefly the mathematical terminology which is used. 
By a curve, we mean a continuous function C from a closed real interval [a, b] (called 
the parameter interval) into the complex plane. C(a) is called the initialpoint, C(b) the 
terminalpoint of C. The inverse C of C is given by C(t) = C(a + b - t), a ? t ? b. 
C is closed provided C(a) = C(b). C* denotes the range of C; i.e., C* = { C(t) I a ? 
t < b }. A path is a piecewise continuously differentiable curve. If C is a path and 
zo E C*, then the winding number of z0, W,(zo), with respect to C is given by 27riWc(zo) 
= c (z - zo)- dz. 

Given complex numbers z and w, the directed line from z to w is defined by [z, w] = 

{(1 -t)z + tw 0 0 < t ? 1}. The distinction between a closed real interval and a 
directed line in the complex plane is always clear from context. A path P with param- 
eter interval [a, b] is called a polygonal path provided there exists a subdivision a = 

tl < ... < tN = b of [a, b] such that P([tn,-, tj]) = [P(tj), P(t)], for each n = 
2, 3, ... , N. The turn-points of P are P(t), n = 1, 2, ... , N. For convenience of 
notation, we identify a polygonal path by its turn-points; P: p, = xn + iyn, n = 

1, 2, ... , N, where p, = P(t), for each n. 

Received March 13, 1972. 
AMS (MOS) subject classifications (1970). Primary 65-00, 65D30; Secondary 65E05. 
Key words and phrases. Computation of winding numbers, closed polygonal paths, interrogation 

of algebraic signs, computer program. 

Copyright 0) 1973, American Mathematical Society 

333 



334 J. V. PETTY 

2. Mathematical Basis for the Algorithm. In this section, we consider the prop- 
osition which enables us to define the algorithm so that it employs primarily the 
interrogation of the signs of the real and imaginary parts of the turn-points of a 
given closed polygonal path. We recall that the winding number is invariant under 
translation of the coordinate axes. In particular, if we wish to find Wj(z), for a given 
closed path C, we may translate the origin to z. Hence, without loss of generality, 
we always assume that the origin has been translated to the winding point and consider 
only W,(O). In order to emphasize the conditions from which the algorithm is derived, 
we make the following 

Definition. Let P pn = xn + iyne n = 1, 2, ... , N, be a closed polygonal path 
with 0 E P*. For each n = 1, 2, ... , N - 1, let Tn be the point set consisting of the 
interior and boundary of the triangle determined by Pn xn + ? iYn, Pn+ . Now, define 
integers Kne Lng for n = 1, 2, .., N - 1, as follows. If O E Tn, then Kn = O and 
Ln = O. If O Tn then 

(2.1) xn+1 = 0 and yn = 0 imply Ln = 0 and Kn = 1, provided xn and yn+ have 
the same sign, or Kn = -1, provided xn and yn+ differ in sign; 

(2.2) xn+l = 0 or yn = 0, but not both, implies Kn = 0 and Ln = 1, provided 
xn and yn+ have the same sign, or Ln = -1, provided xn and yn+ differ in sign; 

(2.3) Xn+i i! 0 and yn 0 0 imply Kn = 0 and Ln = 2, provided Xn+l and yn - Yn+l 
have the same sign, or Ln = -2, provided xn+i and Yn - Yn+l differ in sign. 

In addition, for each n = 1, 2, , N - 1, put 
(2.4) In = (E(Yn+ 1 Xn+ 1) + E(Xng yn)) - (E(xn+ 1 yn) + E(yng Xn+1)), where E(a, b) = 

Arctan (a/b), if b 3 0, or E(a, b) = 0, if b = 0. (Here Arctan indicates the principal 
branch of the inverse tangent relation.) 

PROPOSITION. Let P: pn = Xn + iyn n = 1, 2, ... , N, be a closed polygonal 
path with 0 E P*. Then 

N-1 

i- J A z- ' dz = Z (In + IKni + LKt) r 
p ~~~n=1 

Proof. Let z = x + iy, z 3 0, u(x, y) = X(X2 + y2f'1 V(X, y) = -y(x2 + y2)y'1 
F = udy + vdx. Thenby[1, 10.10,p. 204], i-1 fpz-1 dz = fpF. Put Sn = [PnPn+1], 
for n = 1, 2, , N- 1. ThenfdF= F Nn-- 1 

F, so it suffices to show that 

ft F = In + 2 Knir + Lntr, 
Sn 

for each n = 1, 2, ,N-1. 

Fix an arbitrary n, 1 < n ? N - 1. If 0 E Tn, put qn = xn+1 + iYng An = [Pnq qnj 

Bn = [Ann Pn+l]. Now, fSn F f An F + fBn F = In, so we have the desired result, 
since, by definition, Kn = 0, Ln = 0, whenever 0 E Tn. Thus, we assume 0 C Tn and 
consider three cases: (1) Xn+1 = 0 and yn = 0; (2) Xn+1 = 0 or yn = 0, but not both; 

(3) xn+ i 0 and Yn id 0. 
Suppose case (1) holds. Now, by [2, Theorem V, p. 437], fSn F = a, where lal is 

the angle subtended at the origin by Sn. Since in this case xn+l = 0 and yn = 0, we 
have lal = sIr. We observe that 0 < a, if Xnq Yn+l have the same sign, or a < 0, if 
Xnq Yn+1 differ in sign. Thus, Kn is defined properly by (2.1) and we have fSn F = MKnr. 
Moreover, xn+1 = 0, yn = 0 imply In = 0 and the definition Ln = 0 given in (2.1) is 
correct, so the Proposition is satisfied for case (1). 



WINDING NUMBER ALGORITHM FOR CLOSED PATHS 335 

For case (2), first assume x.,1 5 0 and yn = 0. Choose a path C having initial 
point pE, and terminal point qn = xn+1 + iy,. such that C* lies in the upper or lower 
half of the plane if Pn+, lies in the upper or lower half of the plane, resp. Also, put 
D = [qu, pn+ 1]. Then, we have .fn F = f c F + CD F. Now by [2, Theorem V, p. 437], 
fc F = a, where lal = ir, and by antidifferentiation, fD F = In. Clearly, 0 < a, if 
xn, yn+ have the same sign, or a < 0, if xn, yea differ in sign. Thus, Kn, Ln are properly 
defined by (2.2), and we have 

f F = In + -Knir + Ln~r 
Sn 

as required. On the other hand, if xn+1 = 0 and Yn = 0, we select a path C having 
initial point qn and terminal point Pn+1 such that C* lies in the left or right half of 
the plane if pn lies in the left or right half of the plane, resp. Let D = [pn, qn]. The 
desired result is obtained in a fashion similar to the one used above. Hence, we reach 
the desired conclusion in either event if case (2) holds. 

Finally, suppose xn+l - 0 and Yn - 0. Let qn = xn+1 + iyn, C = [qua Pn+i], D = 

[PI, qn]. Now Isn F $ f c F + CD F, since independence of path does not hold. However, 
if rn = xn + iyn+1, A = [Pn, rn], B = [rn, Pn+ II, then we have fJn F = IA F + fI F. 
Define a path G = A + B + C + D. Now G is a simple closed path around the origin, 
so fI F = a, where a = 2ir if G is traversed counterclockwise, or a = - 2ir if G is 
traversed clockwise. We observe that the direction of G can be determined easily: 
G is traversed counterclockwise if xn+,, yn - yn+l have the same sign, or is traversed 
clockwise if xn+ 1, y - yn +, differ in sign. Consequently, we see that, by (2.3), Ln is 
defined properly, so we have 

Lnar = f F f F+ f F+ F + f F. 

The desired result now follows easily and the proof of the Proposition is complete. 
Now, for a given n, 1 < n < N - 1, observe that E(y,, +, x +1) is a summand in In, 

and E(xn +, yn + ) is a summand in I,+. Hence, if xn+ 1 0, yn + $ 0, Mn = 
2iF1(E(yn+1, xn+1) + E(xn+1, yn+1)), then Me = 1, provided x,,+1, yn+1 have the same 
sign, or Mn = -1, provided xn +1, yn+ differ in sign. If xn + = 0 or yn+ = 0, then 
Mn = 0. In addition, E(xn+1, yn) + E(yn, xn+1) appears in In. Thus, if 

M=t = 2ir1(E(xn+l, Y) + E(yn, Xn+1)), 

then M' = 1, -1, or 0, depending on xn+i, yn in the same fashion. Therefore, we 
can determine the contribution made to i-l fI z-1 dz by En-- In without explicitly 
using the inverse tangent; i.e., En In = n 2 Zn= (M n-Ms) 

Thus, given a closed polygonal path P with 0 E P*, we have that Wp(0) - 
4 En-l (Mn - Mn + Kn + 2Ln). This follows easily from the Proposition and the 
above observations. 

3. The Algorithm. Let R: rn = sn + it,, n = 1, 2, * , N, be a closed polygonal 
path, a + ib a complex number for which we are to compute WR(a + ib), or determine 
that a + ib E R*. For each n = 1, 2, , Nput xn = sn- a, yn = tn - b. Then, 
P : n= Xn + iYn, n = 1, 2, * *, N, is a closed polygonal path and we are concerned 



336 J. V. PETTY 

with computing W,(0), since W,(0) = WR(a + ib), or determining that 0 E P*. 
For each n = 1, 2, . , N - 1, let Sn, Tn be defined as in the preceding section. 

The algorithm consists of carrying out the four steps listed below for each n= 

1, 2, *,N-1, defining K, Ln, Mn, M' as indicated. 
Step 1. Determine if 0 E Sn; if so, terminate the process; if not, carry out 

Step 2 whenever 0 X Tn, or Step 3 whenever 0 C Tn. 
Step 2. Put K, = 0, L = 0. Now carry out Step 4. 
Step 3. Define K& = 0, 1, or -1 and L4 = 0, 1, -1, 2, or -2, according to 

which of the conditions (2.1), (2.2), or (2.3) is applicable. Now, carry out Step 4, 
except when (2.1) is applicable; in this case, put M - = 0, M' = 0 and start the process 
again at Step 1 with n + 1. 

Step 4. Put Mn = 0, if x,+ 0 or y+1 = 0; M. = 1, if xn+,y y+ are nonzero 
and have the same sign; M.- -1, if x+ 1, Yn+i are nonzero and differ in sign. Put 

M' = 0, if xn = 0 or yn+l = 0; M' = 1, if x, yn+l are nonzero and have the same 
sign; M' = -1, if xn, Yn+1 are nonzero and differ in sign. 

If 0 T P*, then all the K, Ln, Mn, M' are defined after going through the algorithm. 
By the Proposition and the concluding remarks of the preceding section, we have 

N-1 

Wp(0) = 4 E M. - M' + K. + 2.Ln 
n=l 

Since Wp(0) is obtained by division by 4, a power of 2, division can be avoided 
in a computer program by using a shift of two bits on the sum. (Most optimizing 
FORTRAN compilers expand shifts as in-line code, as opposed to treating them as 
subprograms, hence shift operations are very efficient.) Also, it is trivial to determine 
if 0 E Sn, 0 C Tn without using division. Therefore, division need not be employed 
at all in a computer program based on the algorithm. This is desirable since division 
is a relatively slow operation in a computer. Moreover, if a + ib, rn, n = 1, 2, * *, N, 
are all Gaussian integers, then it is evident that a computer program based on the 
algorithm can be written completely in fixed-point mode. This too is desirable, since 
fixed-point operations are faster in a computer than floating-point operations. 

4. The Computer Program. A FORTRAN IV program based on the algorithm 
has been tested for efficiency on several cases. The program was compiled using the 
highest level of optimization available at the installation used by the author. A typical 
test case consisted of a closed polygonal path P having 25 turn-points and 22,000 
points for which the program computed the winding numbers or determined that 
points were on P*. All points (including the turn-points of P) were Gaussian integers. 
Of the 22,000 points, 5,000 were on P*, 5,000 were inside P*, and 12,000 were outside 
P*. Hence, on this test case, the program was required to carry out the algorithm 
completely 17,000 times, but had to carry out the algorithm only partially for the 
5,000 points which were on P*. The program required 21.52 seconds of task time on 
an IBM 360/65 to process this test case. 

As a basis for comparison, a program was written in FORTRAN IV which 
computed the winding number by evaluating the required integral using antidif- 
ferentiation. (The FORTRAN inverse tangent subprogram was employed.) This 
program (compiled using the highest level of optimization) required 149.54 seconds 
of task time on the same machine to process the above test case. 



WINDING NUMBER ALGORITHM FOR CLOSED PATHS 337 

Similar results were observed on all other test cases attempted. The program based 
on the algorithm processed all test cases at least seven times faster than the other 
program, and in some cases, ten times faster. 

Design Automation Department 
Texas Instruments, Inc. 
Dallas, Texas 75222 

1. W. RUDIN, Real and Complex Analysis, McGraw-Hill Series in Higher Math., 
McGraw-Hill, New York, 1966. MR 35 #1420. 

2. A. E. TAYLOR, Advanced Calculus, Ginn, New York, 1955. 


